PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration.
نویسندگان
چکیده
Our study focused on the role of poly(ethylene glycol) (PEG) in actively regulating the biological responsiveness of protein-adsorbed biomaterials. To this end, we designed PEG-variant biomaterials from a family of tyrosine/PEG-derived polycarbonates to present surfaces ranging from low to intermediate levels of PEG concentration, below the PEG level requisite for complete abolition of protein adsorption. We analyzed the effect of PEG concentration on the amount, conformation and bioactivity of an adsorbed model protein, fibronectin, and on the attachment, adhesion strength and motility of L929 fibroblasts. Our results demonstrate that low levels of PEG can regulate not only the extent but also the conformation and specific bioactivity of adsorbed fibronectin. As the PEG concentration was increased from 0 to 6 mol%, the amount of adsorbed fibronectin decreased linearly yet the fibronectin conformation was altered such that the overall bioactivity of adsorbed fibronectin was uncompromised. We report that the degree of cell attachment varied with PEG concentration in a manner similar to the dependence of fibronectin bioactivity on PEG. In contrast, the nature of cell adhesion strength dependence on PEG paralleled the pattern observed for fibronectin surface concentration. Our studies also indicated that the rate of cell migration was inversely correlated with PEG concentration over a narrow range of PEG concentration. Overall, these results highlight the striking ability of PEG-variant biomaterials to systematically regulate the behavior of adsorbed cell adhesion proteins and, consequently, effect cell functions.
منابع مشابه
Proteins and cells on PEG immobilized silicon surfaces.
Silicon surfaces were modified by covalent attachment of a self-assembled (SA) polyethylene glycol (PEG) film. Adsorption of albumin, fibrinogen, and IgG to PEG immobilized silicon surfaces was studied by ellipsometry to evaluate the non-fouling and non-immunogenic properties of the surfaces. The adhesion and proliferation of human fibroblast and Hela cells onto the modified surfaces were inves...
متن کاملMussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces.
A new biomimetic strategy for modification of biomaterial surfaces with poly(ethylene glycol) (PEG) was developed. The strategy exploits the adhesive characteristics of 3,4-dihydroxyphenylalanine (DOPA), an important component of mussel adhesive proteins, to anchor PEG onto surfaces, rendering the surfaces resistant to cell attachment. Linear monomethoxy-terminated PEGs were conjugated either t...
متن کاملFacile preparation of a photoactivatable surface on a 96-well plate: a versatile and multiplex cell migration assay platform.
Cell migration is an essential cellular activity in various physiological and pathological processes, such as wound healing and cancer metastasis. Therefore, in vitro cell migration assays are important not only for fundamental biological studies but also for evaluating potential drugs that control cell migration activity in medical applications. In this regard, robust control over cell migrati...
متن کاملQuantitative Study of the Effects of PEG Substrate Physical Properties and Degradation Kinetics on Fibroblast Cell Migration
Project Description: Engineering functional tissue replacements relies on a variety of inputs that must be provided to cells with spatial and temporal control in order to direct tissue development. These inputs include insoluble extracellular matrix (ECM) proteins, as well as ECM physical properties which are important for meditating cell adhesion, proliferation and migration. While naturally d...
متن کاملBiomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types.
Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2000